
NEURON: a Tool for Neuroscientists

M.L. Hines1 and N.T. Carnevale2

Departments of 1Computer Science and 2Psychology

Yale University

michael.hines@yale.edu

ted.carnevale@yale.edu

A revised preprint of:
Hines, M.L. and Carnevale, N.T.
NEURON: a tool for neuroscientists. 
The Neuroscientist 7:123-135, 2001.



Revised August 1, 2010

Abstract
NEURON is a simulation environment for models of individual neurons and networks of

neurons that are closely linked to experimental data. NEURON provides tools for conveniently
constructing, exercising, and managing models, so that special expertise in numerical methods
or programming is not required for its productive use. This paper describes two tools that
address the problem of how to achieve computational efficiency and accuracy.

Introduction
Over the past two decades, the application of new experimental techniques has yielded a

wealth of information about the anatomical and biophysical properties of neurons and neural
circuits. This expansion of knowledge is essential for understanding the biological basis of brain
function, yet it comes at a cost of its own, since most data can now only be interpreted in terms
of the interaction of many complex mechanisms. Increasingly aware of the difficulty of
establishing consistency between data and theory, growing numbers of neuroscientists have
found empirically-based modeling to be a useful tool for studying the functional implications of
anatomy and biophysics. 

Two important factors have facilitated the widening acceptance of modeling among
experimentalists. The first is the availability of powerful yet inexpensive computing hardware,
so that most small laboratories, and even students, can now afford machines whose performance
rivals that of supercomputers of recent memory. The second factor is the development of
domain-specific simulation tools such as NEURON (http://www.neuron.yale.edu), which is
designed to provide a flexible and convenient environment in which neuroscientists can take
advantage of this raw computing power.

These circumstances have driven a progressive shift in modeling away from speculation to
models that are highly constrained by biological data. In this paper we provide a brief overview
of why NEURON is particularly well-suited to this kind of modeling, and discuss in greater
detail the most recent enhancements to this program that address existing and emerging needs of
investigators who are concerned with reconciling theory and experiment.

Background
NEURON can simulate individual neurons and networks of neurons with properties that

may include, but are not limited to, complex branching morphology, multiple channel types,
inhomogeneous channel distribution, ionic diffusion, and the effects of second messengers. It
provides tools for constructing, exercising, and managing models, so that special expertise in
numerical methods or programming is not required for its productive use.

These attributes are responsible for the application of NEURON to a broad range of research
questions, from the basic cellular mechanisms that underlie neuronal function, to information
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encoding and the operation of large-scale networks involved in consciousness, perception,
learning, and memory, and for examining the roles of neuronal and network properties in
diseases such as epilepsy, multiple sclerosis, and disorders of learning and memory. NEURON
has been used in research reported in more than 220 scientific articles, 81 of which were
published in the past two years. A survey of the recent literature finds that it has been used for
modeling individual cells or subcellular components to address topics that include:

� pre- and postsynaptic mechanisms involved in synaptic transmission (Ahmed et al. 1998;
Baccus 1998; Dzubay and Jahr 1999; Kits et al. 1999; Neville and Lytton 1999; Thomson and
Destexhe 1999)

� dendritic electrotonus and synaptic integration (Cameron et al. 1999; Chitwood et al. 1999;
Destexhe and Pare 1999; Jaffe and Carnevale 1999; Kulagina 1999; Larkum et al. 1998;
London et al. 1999; Migliore and Culotta 1998; Raastad et al. 1998; Thurbon et al. 1998;
Winslow et al. 1999)

� amplification and suppression of postsynaptic potentials by dendritic active currents (Cook
and Johnston 1999; Destexhe et al. 1998b; Korogod and Kulagina 1998; 1999; Pare et al.
1998a; Stuart and Spruston 1998; Takagi et al. 1998)

� spike initiation, including dendritic spikes (Lüscher and Larkum 1998; Migliore et al. 1999;
Shen et al. 1999; Pare et al. 1998a)

� intrinsic neuronal activity (Canavier 1999; Elaagouby and Yuste 1999; Zhu et al. 1999a;
1999b) and its modulation by neuropeptides (Sohal et al. 1998)

� neural code (Brown et al. 1999; Engel et al. 1999; Mukherjee and Kaplan 1998; Neubig and
Destexhe 1999; Shao et al. 1999; Sheasby and Fohlmeister 1999; Tang et al. 1999)

� neuronal changes during development (Ivanov et al. 1999; Vabnick et al. 1999)

� extracellular stimulation (Greenberg et al. 1999; Maccabee et al. 1998; McIntyre and Grill
1999) and recording (Sahin and Durand 1998)

� network modulation of cellular activity (Bernasconi et al. 1999; Nadim et al. 1998)

� mechanisms of motor control (Herrmann and Flanders 1998)

� cellular mechanisms involved in visual direction and orientation selectivity (Anderson et al.
1999; Mel et al. 1998) and stereoacusis (Simon et al. 1999; Zacksenhouse et al. 1998)

There are also many reports of network models implemented with NEURON. These models
have been used to study phenomena such as

� thalamic and thalamocortical oscillations (Destexhe 1998; Destexhe et al. 1999; Houweling et
al. 1999; Sohal and Huguenard 1998; 2000)

� synchronization of network oscillations by gap junctions (Moortgat et al. 2000)

� encoding of temporal information (Buonomano 2000; Lytton and Lipton 1999)
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� network mechanisms underlying orientation selectivity in vision (Bush and Priebe 1998)

� mechanisms of epilepsy (Bush et al. 1999; Destexhe 1999; Lytton et al. 1998)

� actions of anticonvulsant drugs (Thomas and Lytton 1998)

This diversity is testimony to the wide utility of NEURON in neuroscience research,
particularly for experimentalists who are concerned with empirically-based modeling. An
important side-effect of these applications of NEURON has been the emergence of a community
of users who have made their own contributions to the utility of this program. Several authors
have developed and published strategies for design of accurate and efficient models of
individual cells and networks with NEURON (Destexhe et al. 1995a; 1995b; 1996; 1997; 1998a;
Jackson and Cauller 1997; Lytton 1996; Mainen and Sejnowski 1998), while others have used it
to implement new tools for the analysis of neuronal properties (Carnevale et al. 1996; 1997;
O'Boyle et al. 1996).

Overview of NEURON
NEURON was initially designed to facilitate dealing with neuronal models in which

complex membrane properties and extended geometry play important roles (Hines 1989; 1993;
1995). Subsequently its domain of applicability has been increased by adding facilities for
describing longitudinal ionic diffusion and computationally efficient representation of
connections in a network (Hines and Carnevale 2000).

The fundamental principles behind the design and implementation of NEURON are detailed
elsewhere (Hines and Carnevale 1997; 2000), but it is useful to summarize them briefly here.
NEURON is formulated around the notion of continuous cable "sections" which can be
connected together to form any kind of branched cable. A section can be assigned properties that
vary continuously with position along its length. The aim is to completely separate the physical
properties of the neuron from the numerical issue of size of spatial compartments, and thus to
help the investigator focus on the biology rather than computational details (Hines and
Carnevale 1997).

User-defined biophysical properties of membrane (e.g. ion channels, pumps) and cytoplasm
(e.g. buffers and second messengers) are described in terms of differential equations, kinetic
schemes, and sets of simultaneous equations. These model descriptions are compiled, so that
membrane voltage and gating states can be computed efficiently using an implicit integration
method optimized for branched structures (Hines and Carnevale 2000).

NEURON derives its flexibility and convenience from two features. The first is a graphical
interface (GUI) that can be used to create models, run initial exploratory simulations, set
parameters, control common voltage and current stimuli, and graph variables as functions of
time and position. The second is an object-oriented interpreter that provides a complete
programming language which is useful for customization of the GUI, advanced data analysis,
and optimization.
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Thus NEURON puts a great deal of computational power at the disposal of the user,
especially for the study of models that have a close relationship to experimental data. Yet this
facility as a vehicle for implementing empirically-based models immediately raises a new set of
problems that are related to managing anatomical and biophysical complexity so as to achieve
computational efficiency and accuracy while at the same time minimizing the effort required of
the user. In this paper we describe features of NEURON that can help users deal successfully
with the problem of balancing computational efficiency with numeric accuracy in space and
time.

Spatiotemporal accuracy vs. computational speed
As mentioned above, NEURON is designed so that users can specify models without being

concerned about compartment size or time step duration. These are mere computational details
that ought not to intrude on the process of prescribing what aspects of the biological system
should be included in the model. The NEURON simulation environment allows such
distractions to be put off until it is time to launch a simulation. Furthermore, it has features and
tools that help users deal easily and effectively with these two previously vexing problems of
modeling.

Time and space are continuous variables in biological neurons, and the spread of electrical
and chemical signals is governed by the diffusion equation, a partial differential equation in
which potential (voltage, concentration) and flux (current, movement of solute) are smooth
functions of time and space (Jack et al. 1983; Rall 1977). A standard strategy is to approximate
the diffusion equation with a set of algebraic difference equations which can be solved
numerically (Carslaw and Jaeger 1980; Crank 1979). This is analogous to approximating the
original continuous system by another system that is discontinuous in time and space, and it is
the approach used by NEURON (Hines and Carnevale 1997). 

NEURON computes the values of spatiotemporally continuous variables over a set of
discrete points in space ("nodes") for a finite number of instants in time. When NEURON's
second order correct integration method is used, these values are a piecewise linear
approximation to the continuous system, so that linear interpolation will give the values of
continuous variables at intermediate locations and times with second order accuracy. The size of
the time step ∆t and the fineness of the spatial grid jointly determine the accuracy of the
solution. How faithfully the computed solution emulates the behavior of the continuous system
depends on the spatial intervals between adjacent nodes, and the temporal intervals between
solution times. These should be small enough that the piecewise linear approximation can follow
the curvature of the solution for the continuous system in space and time.

Figure 1 shows how this works in a situation where the size of the time step is the only
consideration. These charging curves were computed from a model of a small spherical cell
with passive membrane which was subjected to a depolarizing current pulse. Since the cell was
isopotential, the spatial grid consisted of a single node. Figure 1B shows the analytic solution
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for membrane potential Vm (dashed orange line) along with numeric solutions that were

computed using several different values of ∆t (solid black lines). As time advanced, even the
least accurate numeric solution became indistinguishable from the analytic solution. However,
solutions computed with large ∆t lack the high-frequency terms needed to follow the initial rapid

change of Vm. Decreasing ∆t produced a progressive improvement in how closely the piecewise

linear approximation approached the smooth curve of the analytic solution, especially at early
times (Fig. 1C). That is, using a smaller ∆t allowed the numeric solution to better capture the
curvature of Vm(t).

Figure 1. A. This model represents a spherical cell with a surface area

of 100 µm2 (diameter = 5.64 µm). The resting potential of the cell is
-70 mV, and the specific capacitance and resistance of its membrane

are Cm = 1 µf / cm2 and Rm = 20,000 Ω cm2, respectively (τm =

20 ms). A 1 pA depolarizing current is injected starting at t = 0 ms. 

5.64 µm

Injected
current

B. The dashed orange line is the analytic solution for Vm during the

first 100 ms, and the solid black lines are the numeric solutions
computed with time steps ∆t = 40 ms (open circle) and 20 ms (×). 
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C. The first 15 ms of the response are shown at an expanded scale. The
numeric solution for ∆t = 10 ms is marked by an open circle; the

solutions for ∆t = 20 and 40 ms are labeled. 
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But a short time step alone does not guarantee good temporal accuracy. If propagation of
electrical or chemical signals through the cell involves significant delay, then the spatial grid is
also important. To see how the spatial grid affects accuracy, we turn to a model of fast
excitatory synaptic input onto a dendritic branch in mammalian brain. In this model, the synapse
is attached to the middle of an unbranched cylinder (Fig. 2A) with passive membrane that is five
DC length constants long to avoid possible confounding effects of complex geometry and active
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current kinetics. The biophysical properties are within the range reported for mammalian central
neurons (Spruston and Johnston 1992). The time course of the synaptic conductance follows an
alpha function (Fig. 2B) with time constant τs and reversal potential Es chosen to emulate an

AMPA synapse (Kleppe and Robinson 1999), and g
max

 selected to produce a peak

depolarization of approximately 10 mV. We use this model to compare the analytic solution for
Vm as a function of space and time with the numeric solution computed with a very small time

step (∆t = 1 µs = 0.001 ms) but a very coarse spatial grid (∆x = 1 µm). 

Figure 2. Model of excitatory synaptic input onto a dendrite.
A. The dendrite is represented by an unbranched cylinder with
diameter = 1 µm, length = 2500 µm, Ra = 160 Ω cm, Cm =

1 µf / cm2, and Rm = 16,000 Ω cm2 with a resting potential of

-70 mV. The DC length constant λDC = 500 µm, so the

sealed-end terminations of this model have little effect on the
EPSP produced by the synapse, which is attached at its
midpoint. The dots are the locations at which the numeric
solution would be computed using a grid with 1 λDC intervals,

i.e. 250, 750, 1250, 1750, and 2250 µm.

presynaptic
terminal

B. The synaptic conductance gs is governed by an alpha

function with τs = 1ms, gmax = 10-9 siemens, and reversal

potential Es = 0 mV.

The time course of Vm at the site of synaptic input (Fig. 3) shows that the numeric solution

(solid black line) rises and falls more slowly than the analytic solution (dashed orange line), and
has a peak depolarization that is substantially smaller and delayed. These differences occurred
even though ∆t was more than two orders of magnitude smaller than necessary to follow the
EPSP waveform. They reflect the fact that solutions based on the coarse grid lack sufficient
amplitude in the the high frequency terms which are needed to reproduce rapidly changing
signals,. Such errors could lead to serious misinterpretations if the purpose of the model were to
examine conditions under which synaptic input might activate depolarization-activated currents,
especially those with fast kinetics like IA, spike sodium current, and transient ICa.
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Figure 3. Left: Time course of Vm at the location of the synapse. The dashed orange

line is the analytic solution, and the solid black line is the numeric solution computed
with time steps of ∆t = 1 µs. Right: An expanded view of the first 10 ms.

The graphs in Fig. 4 present the spatial profile of Vm along the dendrite at two times selected

from the rising and falling phases of the EPSP. These curves, which are representative of the
early and late response to synaptic input, show that the error of the numeric solution is most
pronounced in the part of the cell where Vm changes most rapidly, i.e. in the near neighborhood

of the synapse. However, at greater distances the analytic solution itself changes much more
slowly because of low-pass filtering produced by cytoplasmic resistivity and membrane
capacitance. At these distances the error of the numeric solution is surprisingly small, even
though it was computed with a very crude spatial grid. Furthermore, error decreases
progressively as time advances and high frequency terms become less important.
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Figure 4. Vm vs. distance along the dendrite computed at two different times: during the rising

(left) and falling (right) phases of the EPSP. The analytic and numeric solutions are shown
with dashed orange and solid black lines, respectively. The error of the numeric solution is
greatest in the region where Vm changes most rapidly, i.e. in the neighborhood of the synapse.
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Figures 1 and 3 demonstrated how accuracy depends on both the size of the time step and
the resolution of the spatial grid. Using an inappropriate value for either can result in excess
computational burden or inaccurate solutions. Furthermore, solutions computed by NEURON's
second-order integration method may oscillate if the time step is too large for the spatial grid.
This is illustrated in Fig. 5, which shows the response of the model dendrite of Fig. 2 to a brief
current pulse injected at its midpoint. To prevent oscillations in the numeric solution, the
normalized increments in time (∆T = ∆t / τm) and space (∆X = ∆x / λ, where ∆x is the distance

between adjacent nodes) must satisfy the relationship ∆T / ∆X2 � 1 / 2 (see chapter 8 in Crank

(1979)). In this model with nodes spaced 20 µm apart, oscillations will occur if ∆t > 0.0128 ms.

0 0.05 0.1 0.15 0.2 0.25
−70

−68

−66

−64

−62

−60

Figure 5. Response of the model dendrite of Fig. 2 to a current step of 0.25 nA lasting
0.05 ms applied at its midpoint. The spatial grid used to compute the numeric
solutions contained 125 nodes (∆x = 20 µm) so oscillations occur if ∆t > 0.0128 ms.
The dashed orange line is the analytic solution for Vm at the site of current injection,

and the thick and thin solid black lines were computed with time steps of ∆t = 0.05

and 0.025 ms, respectively. In this figure, the numeric solution for ∆t = 0.0125 ms is
indistinguishable from the analytic solution.

As these examples indicate, choosing an appropriate spatiotemporal grid is a recurring
practical problem in neural modeling. The accuracy required of a discrete approximation to a
continuous system, and the effort needed to compute it, depend on the anatomical and
biophysical complexity of the original system and the question that is being asked. Thus finding
the steady-state (resting) Vm of an isopotential model with passive membrane may require only

a few large time steps at one point in space, but determining the time course of Vm throughout a

highly branched model with active membrane as it fires a burst of spikes may demand much
finer spatiotemporal resolution; furthermore, selecting ∆x and ∆t for complex models can be
especially difficult.
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Choosing the spatial grid

One time-honored way to check the adequacy of the spatial grid is to repeatedly increase the
number of grid points and exercise the model until further increases cause no significant change
in simulation results. A particularly convenient way to do this is in NEURON is through the
command forall nseg*=3, which triples the number of nodes throughout the model. Since
NEURON solutions are second-order accurate in space, this reduces spatial error by a factor of
9, allowing easy detection of inadequacies of the spatial grid. Use of an odd multiple (Fig. 6A)
also has the distinct advantage of introducing new nodes into the gaps between existing nodes,
while leaving the positions of the latter unchanged. Existing nodes would be destroyed if an
even multiple were used (Fig. 6B), making it impossible to tell whether an apparent difference
between simulations should be attributed to different spatial errors or instead to the fact that the
solutions were computed for different points in space.

Fig. 6. A. Increasing the density of the spatial grid by an odd multiple, such as 3,
preserves existing grid points (filled circles) while adding new ones (empty circles).
The presence of grid points at identical locations in these two different grids allows
direct comparison of simulations. 

B. Attempts to compare simulations generated with grid densities that differ by an
even multiple are confounded by the fact that the solutions were computed at
completely different points in space. ?

The simple and convenient strategy of repeatedly tripling the number of nodes throughout an
entire model is generally not computationally efficient, especially if geometry is complex and
biophysical properties are nonuniform. We have found that models that incorporate quantitative
morphometric data frequently contain at least a few branches that need 9 or more nodes, yet
many other branches need only 1 or 3 nodes. In such models, by the time the spatial grid is just
adequate in some regions, elsewhere it will be much finer than necessary, requiring more
storage and prolonging run times. 

Alternatively one might try the common practice of keeping the distance between adjacent
grid points less than a small fraction (e.g. 5 - 10%) of the DC length constant λDC of an infinite

cylinder with identical diameter, cytoplasmic resistivity, and specific membrane resistance
(Mainen and Sejnowski 1998; Segev and Burke 1998). This plausible approach has two chief
limitations. First, large changes in Rm and λDC can be produced by activation of voltage-

dependent channels (e.g. Ih (Magee 1998; Stuart and Spruston 1998)), Ca2+-gated channels

(Wessel et al. 1999), or synaptic inputs (Bernander et al. 1991; Destexhe and Pare 1999; Häusser
and Clark 1997; Pare et al. 1998b). The second and more fundamental problem is that the spatial
decay of transient signals is unrelated to λDC. Cytoplasmic resistance Ra and membrane
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capacitance Cm constitute a spatially distributed low-pass filter, so transient signals are subject

to greater distortion and attenuation with distance than DC or slowly changing signals are. In
other words, by virtue of their high frequency components in time, transient signals also have
high frequency components in space. Just as high temporal frequencies demand a short time
step, high spatial frequencies demand a fine grid.

As a rational revision to the present practice, we propose a criterion based on the length
constant λf computed at a frequency f that is high enough for transmembrane current to be

primarily capacitive, yet still within the range of frequencies relevant to neuronal function. Ionic
and capacitive transmembrane currents are equal at the frequency fm = 1 / 2 π τm, so Rm has

little effect on the propagation of signals � 5 fm. For instance, a membrane time constant of

30 ms corresponds to fm ~ 5 Hz, so Rm would be irrelevant to signal spread at frequencies

� 25 Hz. Most cells of current interest have τm � 8 ms (fm ~ 20 Hz), so we suggest that the

distance between adjacent nodes should be no larger than a user-specified fraction of λ100, the

length constant at 100 Hz. This frequency is high enough for signal propagation to be insensitive
to shunting by ionic conductances, but it is not unreasonably high because the rise time τr of fast

EPSPs and spikes is ~ 1 ms, which corresponds to a bandpass of 1/�r�2� ~ 400 Hz.

At frequencies where Rm can be ignored, the attenuation of signal amplitude is described by

log�
V

0

V
x
�� 2 x �� f R

a
C

m

d
Eq. 1

so the distance over which an e-fold attenuation occurs is

	
f
�

1
2 � d

� f R
a

C
m

Eq. 2

where f is in Hz. As an example, the model dendrite of Fig. 2 has λDC = 500 µm, but λ100 is only

~225 µm.

In NEURON this rule is implemented in the CellBuilder, a GUI tool for constructing and
managing models of cells. The CellBuilder allows the maximum anatomical distance between
grid points to be specified as a fraction of λ100 using an adjustable parameter called d_lambda.

The default value of d_lambda is 0.3, which is more than adequate for most purposes, but a

smaller value can be used if τm is shorter than 8 ms. For increased flexibility, the CellBuilder

also provides two alternative strategies: specifying nseg, the actual number of grid points;
specifying d_X, the maximum anatomical distance between grid points in µm. Each of these
strategies deliberately sets nseg to an odd number, which guarantees that every branch will
have a node at its midpoint (e.g. Fig. 6). These strategies can be applied to any section or set of
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sections in a model, each section or set of sections having its own rule and parameter value.
However, barring special circumstances e.g. localized high membrane conductance, it is usually
sufficient to use the d_lambda strategy for the entire model. Regardless of which strategy is
selected, it is always advisable to try a few exploratory runs with a finer grid to be sure that
spatial error is acceptable.

To see how the d_lambda rule works in practice, consider the model in Fig. 7 A, which
represents a granule cell from the dentate gyrus of the rat hippocampus. The complex
architecture of this model is taken directly from quantitative morphometric data provided by
Dennis Turner (http://www.neuro.soton.ac.uk/cells/cellArchive.html), and the biophysical

parameters are the same as those reported by Spruston and Johnston (1992): Rm = 40 k Ω cm2,

Cm = 1 µf / cm2, and Ra = 200 Ω cm. Attached to the soma is an excitatory synapse; this is

identical to the AMPA synapse of Fig. 2 except that g
max

 has been reduced to 2 · 10-9 siemens.

Figure 7. A. Anatomically detailed model of a granule cell from
the dentate gyrus of the rat hippocampus. A fast AMPA synapse is
attached to the soma (location indicated by arrow and orange dot).
See text for details.

B. Time course of V
soma

 computed using spatial grids with one or

three nodes per branch (thick blue and thin black traces for nseg =
1 and 3, respectively) or specified by the d_lambda = 0.3 criterion
(dashed orange trace).

2 4 6 8 10
−70

−68

−66

−64

−62
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d_lambda = 0.3

−60
 mV

0 ms

Figure 7 B shows the time course of Vm at the soma computed with ∆t = 25 µs using three

different methods of specifying the spatial grid: one or three nodes in each branch (thick blue
and thin black traces, respectively), and d_lambda = 0.3. On the scale of this figure, solutions

with d_lambda � 0.3 and ∆t � 25 µs are indistinguishable from each other, so the d_lambda
= 0.3 trace (dashed orange) serves as the standard for accuracy. Plots generated with constant
nseg per branch converged toward this trace with increasing nseg. From this figure we can see
that even the crudest spatial grid (nseg = 1) would suffice if the purpose of the model were to
evaluate effects of synaptic input on Vsoma well after the peak of the EPSP (t > 7 ms). However

Page 12



Revised August 1, 2010

a finer grid is clearly necessary if the maximum somatic depolarization produced by the EPSP is
of concern. 

Additional refinements to the grid are necessary if we are interested in how the EPSP
spreads into other parts of the cell, e.g. the path marked by orange in Fig. 8 A. To compute the
maximum depolarization produced by a somatic EPSP along this path, the model can get along
with a grid that has only 3 nodes per branch (Fig. 8 B). If the timing of this peak is important,
e.g. for coincidence detection or activation of voltage-gated currents, a finer grid must be used
(Fig. 8 C).

The computational cost of these simulations is approximately proportional to the number of
nodes. Least burdensome, but also least accurate, were the simulations generated with one node
per branch, which involved a total of 28 nodes in the model. Increasing the number of nodes per
branch to 3 (total nodes in model = 84) improved accuracy considerably, but noticeable errors
remained (Fig. 8C) that disappeared only after an additional tripling of the number of nodes per
branch (total nodes = 252; results not shown). The greatest accuracy without sacrificing
efficiency was achieved with the grid specified by the d_lambda = 0.3 criterion, which
contained only 110 nodes.

Figure 8 A. The EPSP evoked by activation of a synapse at the
soma (arrow) spread into the dendrites, producing a transient
depolarization which grew smaller and occurred later as distance
from the soma increased. Parts B and C of this figure show how
the magnitude and timing of this depolarization varied along the
path marked here by a dashed orange line.

B. Peak amplitude of the dendritic depolarization as a function of
distance from the soma along the path shown in A. The results

computed with nseg = 3 throughout the model (thin black trace)
are nearly identical to the standard for accuracy (dashed orange

trace, computed with d_lambda = 0.3). 
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C. Time of the peak dendritic depolarization as a function of
distance from the soma along the path shown in A. Over the range
of ~ -150 to -300 µm there is a substantial difference between the
curve computed with 3 nodes per branch (thin black trace) and the
standard for accuracy (dashed orange trace). This difference

disappears if nseg is set to 9 in each branch (results not shown).

−300 −100 100 300 500
0

5

10

15
ms

−500µm

nseg = 1
nseg = 3

d_lambda = 0.3

As these figures suggest, the advantages of the d_lambda strategy will be most apparent
when signal propagation throughout the entire model must be simulated to a similar level of
accuracy. If the focus is on a limited region, then a grid with fewer nodes and a simpler
representation of electrically remote areas may be acceptable. Special features of the model may
also allow a simpler grid to be used. For example, in principal neurons of mammalian cortex,
proximal dendritic branches tend to have larger diameters (Hillman 1979; Rall 1959) and shorter
lengths (Cannon et al. 1999) than distal branches. In models based on quantitative morphometry,
grids specified with either a d_lambda or d_X criterion will have fewer nodes in proximal
branches than in more distal branches. Indeed, many proximal branches may have only one or
three nodes, regardless of which criterion is applied; differences between gridding strategies will
manifest only in the thinner and longer distal branches. Such differences will have little effect
on simulation results if signals in the vicinity of the soma are the only concern, and the relative
advantage of the d_lambda strategy will be smaller.

Choosing the time step

The choice of an appropriate time step ∆t is the temporal corollary of assigning a spatial
grid, and it raises similar concerns. We have seen how grid spacing affects the ability of the
computational solution to follow spatial nonlinearities in state variables (e.g. curvature in the
plot of Vm vs. distance (Fig. 8)); likewise, the size of ∆t should be set according to the degree to

which state variables change nonlinearly with time (Fig. 1).

There is a wide variety of problems for which an adaptive time step method would be
expected to have much higher performance than a fixed step method, i.e. ∆t could grow very
large when all states are varying slowly, as in interspike intervals. On the other hand, in
problems that involve propagating action potentials or networks of cells, it may happen that
some state somewhere in the system is always varying quickly. In such cases ∆t must always be
small in order to follow whichever state is varying fastest. It is often not obvious in advance
whether the increased overhead of an adaptive time step method will be repaid with an
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occasional series of long time steps. Even so, the greatest benefit of an adaptive time step
method may be that it offers the user a direct choice of local step accuracy rather than ∆t.

To this end, NEURON has adopted CVODE (Cohen and Hindmarsh 1994), one of the
standard variable timestep / variable order integration methods. With CVODE, the user specifies
a maximum allowable absolute error rather than ∆t. The integrator then dynamically adjusts ∆t
so that the estimated local error of each state variable is always less than the maximum absolute
error. The default value chosen for the maximum absolute error was 0.01 so that the classical
Hodgkin-Huxley action potential simulation at 6.3°C had accuracy comparable to a second
order correct simulation with fixed ∆t = 25 µs. The user can specify an error criterion that
involves relative tolerance, but this is generally not advisable in neural modeling because there
is rarely a reason to require increasing absolute accuracy around the 0 value of most states,
especially voltage. However, the scale of states is often a crucial consideration and the
maximum absolute error must be consistent with the desired resolution of each state. An extreme

example is a model of a calcium pump in which pump density is measured in moles/cm2. Here

an appropriate value is 10-14 mole/cm2, and an allowable error of 0.01 is clearly nonsense. For

this reason, it is essential that each state that is badly scaled, e.g. [Ca2+]i measured in mM, be

given its own explicit maximum absolute error. NEURON accommodates this need by allowing
the user to set specific error criteria for individual states that take precedence over any global
criterion.

For an example of how CVODE can reduce the time necessary to produce accurate
simulations, we turn to the neocortical layer V pyramidal cell model described by Mainen and
Sejnowski (1996). We computed the response of this model over 1000 ms, during which a
900 ms depolarizing current applied to the soma evoked two bursts of spikes (see Fig. 9 A).
Global error of the simulation was assessed by observing the effect of reducing the integration
time step or CVODE absolute tolerance on the variance of the time tx at which the last somatic

action potential crossed above 0 mV. When the fixed step, second order integration method was
used, tx converged to 695.3 ms for ∆t ≤ 0.01 ms, and a simulation performed with ∆t = 0.01 ms

took 807 seconds to complete. Solutions computed with CVODE converged to the same tx when

absolute tolerance was 2.5 · 10-3 for all states except for [Ca2+]i, which had an absolute

tolerance of 2.5 · 10-7; the solution generated with these tolerances had a runtime of just 44
seconds. In other words, CVODE allowed us to achieve the same accuracy as the most accurate
fixed time step solution, but with a runtime that was more than ten times faster.

Figure 9 B reveals the control that CVODE exerted over the integration step size throughout
the entire simulation, cutting ∆t to values much smaller than 0.01 ms when states were changing
most rapidly, and increasing it to a maximum of ~4.4 ms during the long interburst interval. The
smallest steps were restricted to narrow intervals that began just before the threshold and ended
shortly after the depolarized peak of each spike, as illustrated by an expanded view of the
transition from the interburst interval to the beginning of the second burst (Fig. 10). The
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remarkable acceleration of the simulation by CVODE reflects the fact that ∆t was much larger
than 0.01 ms for most of the run.

An important feature of the variable step method is the fact that it was incorporated in
NEURON in such a way that users will find it as unobtrusive and easy to apply as possible.
Care has been taken so that the same description of a model neuron or biophysical mechanism
will work with each of NEURON's integration methods. Furthermore, once a model
specification has been created, switching between fixed and variable time step methods is as
simple as a button press. This convenience is crucial since relative performance between high
overhead variable step and low overhead fixed step methods ranges widely. For example, the
demonstration simulations by Mainen and Sejnowski (1996) slowed down by a factor of 2 or
sped up by a factor of 7, depending on number of spikes in a simulation run and whether there
are long intervals in which no state is rapidly changing.

Figure 9. A. Somatic Vm(t) in a model of a neocortical layer V

pyramidal cell subjected to a long depolarizing pulse. At the scale
of this figure, solutions computed with the fixed and variable
order/variable time step methods are indistinguishable from each
other. See text for details.

B. The ∆t used by CVODE varied over a wide range, dropping
below 0.01 ms transiently during each action potential, and at
three instants: the very beginning of the simulation (t = 0 ms), and
at the abrupt start and end of the injected current pulse (5 ms and

905 ms). However for most of the simulation ∆t was much larger
than 0.01 ms. The order of integration ranged from 2 to 5, with
most steps using second or third order integration.
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NEURON provides a network connection class (NetCon) for network simulations in which
cell to cell communication can be abstractly represented by the (possibly delayed) delivery of
logical events, as opposed to graded interaction via gap junctions or electrical synapses. The
notion of a cell driven by discrete input events naturally suggests a possible expansion of the
simulation domain where variable time step methods provide substantial performance gains.
Recall that in networks it may happen that only a few cells are active at any one time but with a
global time step these active cells govern the time step for all. The local variable time step

Page 16



Revised August 1, 2010

method uses a separate CVODE solver instance for each cell, which integrates that cell's states
with time steps governed only by those state dynamics and the discrete input events, and can
efficiently (without integrating equations) retreat from its current time to any time as far back as
the beginning of its previous time step.

All cells are always on a list ordered by their current time and all outstanding events are on a
list ordered by their delivery time. The network progresses forward in time by finding the least
time cell or event and integrating that cell by one step or delivering the event to the proper cell.
In the latter case, the cell retreats to the delivery time and becomes the least time cell. The event,
of course is removed from the list and discarded. In the former case, the cell is integrated
according to its current time step and moves to a location on the cell list appropriate to its new
time. 

Figure 10. A. An expanded view of the beginning of the second
burst. The + symbols mark the times at which the solution was
computed using CVODE. See text for details.

B. The ∆t used by CVODE was > 0.01 ms throughout the entire
simulation except for brief intervals that extended from just before
the threshold of each spike until shortly after its peak.
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In periods of synchronous activity, the local time step method yields no benefit. If events are
extremely numerous, neither the local nor the global variable time step methods gives a
performance boost. When multiple events per reasonable ∆t arrive regularly, the fixed time step
nicely aggregates all events in a step without regard to their micro temporal structure, whereas
the variable step method's scrupulous handling of each event is out of all proportion to the
conceptual approximation of the network. On the other hand it is easy to devise networks in
which the speed improvement of the local step approach is arbitrarily great, e.g. chains of
neurons. The fact that the integration method is so dependent on both the problem and the
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intention of the user underscores the importance of allowing easy selection of any of them with
no changes to the user-level specification of the model.

One limiting case of the variable step simulation style is the event driven simulation, in
which the cell jumps from event to event. Here a single compartment is used merely as a stage in
which the voltage never changes (the natural time step is infinite) and the cells are represented
by POINTPROCESSes that receive events from, and provide events to, the NetCon instances. A
wide range of abstract neuronal phenomena useful in artificial neural nets, such as integrate and
fire, firing frequency dependent on input, and use dependent synaptic plasticity, have equations
that can be solved analytically so that "cell" state needs only to be computed at the event.

Discussion
A computational model of a neurobiological system is actually a model of a model. The first

level of modeling occurs when, motivated by some phenomenon of interest, one formulates a
hypothesis that includes just those properties of the original system that are judged to be
essential. This hypothesis itself is a conceptual model, derived from the real world by a process
of abstraction and simplification that relies heavily on scientific insight about the biology. Some
conceptual models are so simple that their implications are obvious. However, most interesting
neural phenomena involve cells and circuits whose anatomical and biophysical complexities
confound intuition. In such a case it can be helpful to create a computational model that
emulates the operation of the conceptual model. This is the second level of modeling, and if it is
to reliably illustrate the consequences of the hypothesis, then the translation from conceptual
model to computational model must be as faithful as possible. The utility of a simulation
environment in neuroscience research derives largely from how well it facilitates the creation of
computational models that closely match their conceptual antecedents. This has always been a
key consideration in the design and implementation of NEURON (Hines 1998).

The utility of a simulation environment also depends strongly on the ease with which
computational models can be exercised. This degrades rapidly when users are forced to divert
their attention from the biology of the problem in order to deal with arbitrary computer issues
that have nothing to do with neuroscience. A major purpose of NEURON is to release the
individual user from such concerns, or at least provide guidance regarding their safe
management. The d_lambda heuristic for dealing with the spatial grid and the CVODE method
for automatically adjusting the order and time step used in numerical integration are effective
and robust, and both have been incorporated in NEURON in such a way that they are quite easy
to apply. These are vital attributes in a simulation environment that is designed to be particularly
well-suited for computational models that are closely linked to experimental data.

We must note that, while the d_lambda criterion for the spatial grid is based on an estimate
of the spread of membrane potential, Vm is not the only state that may vary nonlinearly in space.

Other factors need to be weighed in models where spatially nonuniform chemical signals play

an important role. The obvious example is [Ca2+]i, which may be subject to nonuniformities as a
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result of channel clustering, localized release from intracellular stores, and the effects of
diffusion and buffering.

We should also point out that the default integration method in NEURON is a fixed step first
order implicit scheme that is numerically stable when extremely stiff ODEs and even algebraic
equations are present in the system, as when voltage clamps are included in the model. All of the
simulations presented in this paper were generated with either NEURON's Crank-Nicholson-like
integration method or CVODE. The Crank-Nicholson-like method uses an algorithm with a
performance that is almost identical to the simpler first order implicit method (Hines, 1984), but
it is second order correct when channel membrane current is instantaneously linear in voltage
(e.g. equations of Hodgkin-Huxley form). Consequently it can use a larger ∆t to achieve the
same accuracy as the first order method, resulting in shorter runtimes.

An important issue in the use of the CVODE method is selection of appropriate values for
local error control. Experience so far suggests that the absolute local error tolerance is much
more important than the relative error. The default error setting (10 µV for membrane potential

and 0.1 nanomolar for free [Ca2+]i) is approximately equivalent to the default fixed ∆t =

0.025 ms for spike transients, but occasionally it gives inaccurate interspike intervals unless the
local error tolerance for Vm is very small. 

No collection of algorithms can cover all contingencies, however, and the user's own
judgment must be the final arbiter of whether a simulation achieves the goal of "physiological
accuracy," i.e. sufficiently accurate to give useful insight into the question under study. It is
essential that computational models be tested so that the errors due to the finite spatial grid and
∆t or error tolerance do not affect the interpretation of results.
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